Publications

Release time :2025-12-20  Read the number :25

Publication List

  1. N. Sun, X. Dou, Z. Tang, et al., Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioact. Mater. 2021, 6, 990–997. https://doi.org/10.1016/j.bioactmat.2020.09.027
  2. M. Qin, Y. Zhang, C. Xing, et al., Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies. Chem. Eur. J. 2021, 27, 3119 – 3129. https://doi.org/10.1002/chem.202004533
  3. X. Ma, J. Liu, C. Feng*. Effect of aromatic core on the supramolecular chirality of L-phenylalanine derived assemblies. Colloid Surface A 2021, 610, 125709. https://doi.org/10.1016/j.colsurfa.2020.125709
  4. L. Yang, X. Dou, C. Ding, et al., Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors. J. Phys. Chem. Lett. 2021, 12, 1155−1161. https://dx.doi.org/10.1021/acs.jpclett.0c03400
  5. M. Sun, S. Peng, L. Nie, et al., Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS Nano, 2021, 15, 14972−14984. https://doi.org/10.1021/acsnano.1c05212
  6. L. Yang, N. Su, J. Huang, et al., Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. Giant, 2021, 8, 100077, https://doi.org/10.1016/j.giant.2021.100077
  7. Y. Zhang, M. Qin, et al., Rational Fabrication of Multiple Dimensional Assemblies from Tryptophan-Based Racemate. Chem. Eur. J. 2021, 27, 14911–14920.  https://doi.org/10.1002/chem.202102145
  8. Y. Zhang, M. Qin, C. Xing, et al., Redox-Driven In Situ Helix Reversal of Graphene-Based Hydrogels. ACS Nano 2020, 14, 17151−17162. https://dx.doi.org/10.1021/acsnano.0c06938
  9. M. Qin, Y. Li, Y. Zhang, et al., Solvent-Controlled Topological Evolution from Nanospheres to Superhelices. Small 2020, 16, 2004756. https://doi.org/10.1002/smll.202004756
  10. F. Wang, H. Qiu*, C. Feng*. Wrapping Chiral Nanoribbons into Coiled and Condensed Microstructures in Supramolecular Hydrogels. Adv. Funct. Mater. 2020, 30, 2002936. https://doi.org/10.1002/adfm.202002936
  11. X. Dou#, N. M.#, C. Zhao, et al., Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications. Acc. Chem. Res. 2020, 53, 852−862. https://dx.doi.org/10.1021/acs.accounts.0c00012
  12. M. Qin, Y. Zhang, J. Liu, et al., Visible Enantiomer Discrimination via Diphenylalanine-Based Chiral Supramolecular Self-Assembly on Multiple Platforms. Langmuir 2020, 36, 2524−2533. https://dx.doi.org/10.1021/acs.langmuir.9b03449
  13. L. Yang, J. Huang, M. Qin, et al., Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. Nanoscale, 2020, 12, 6233. DOI: 10.1039/d0nr00279h
  14. N. Mehwish, X. Dou*, C. Zhao, et al., Chirality Transfer in Supramolecular Co‑assembled Fibrous Material Enabling the Visual Recognition of Sucrose. Advanced Fiber Materials, 2020, 2, 204–211 https://doi.org/10.1007/s42765-020-00028-w
  15. Y. Zhang, M. Qin, C. Zhao, et al., Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly. Carbon, 2020, 165, 82-89. https://doi.org/10.1016/j.carbon.2020.04.032
  16. A. Dang-i, T. Huang, N. Mehwish, et al., Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives. ACS Appl. Bio Mater. 2020, 3, 2295−2304. https://dx.doi.org/10.1021/acsabm.0c00075
  17. W. Ji, C. Yuan, F. Wang, et al., Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids and Surfaces A, 2020, 597, 124744. https://doi.org/10.1016/j.colsurfa.2020.124744
  18. X. Dou, B. Wu, J. Liu, et al., Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly, ACS Appl. Mater. Interfaces 2019, 11, 38568−38577. DOI: 10.1021/acsami.9b15710
  19. Y. Wei, S. Jiang, M. Si, et al., Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses, Adv. Mater. 2019, 31, 1900582 https://doi.org/10.1002/adma.201900582.
  20. A. Dang-i, A. Kousar, J. Liu, et al., Mechanically Stable C2-Phenylalanine Hybrid Hydrogels for Manipulating Cell Adhesion. ACS Appl. Mater. Interfaces 2019, 11, 28657−28664. https://doi.org/10.1021/acsami.9b08655
  21. N. Mehwish, A. Kousar, A. Dang-i, et al., Molecular recognition of melamine and cyanuric acid by C2-symmetric phenylalanine based supramolecular hydrogels. Eur. Polym. J. 2019, 118, 170-175. https://doi.org/10.1016/j.eurpolymj.2019.05.059
  22. N. Mehwish, X. Dou*, C. Feng*. Trends in design of C2-symmetric supramolecular chiral gelators. Eur. Polym. J. 2019, 117, 236-253. https://doi.org/10.1016/j.eurpolymj.2019.05.034
  23. T. Peng, A. Yinme Dang‑I, J. Liu, et al., [2+2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels. Advanced Fiber Materials 2019, 1, 241–247. https://doi.org/10.1007/s42765-019-00014-x
  24. F. Wang, W. Ji, P. Yang, C. Feng*. Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Coassembly with Achiral Coumarin Derivatives. ACS Nano 2019, 13, 7281−7290. https://doi.org/10.1021/acsnano.9b03255
  25. L. Yang, F. Wang, Dang-i Y. Auphedeous, et al., Achiral Isomers controlled Circularly Polarized Luminescence in Supramolecular Hydrogels. Nanoscale 2019, 11, 14210. https://doi.org/10.1039/C9NR05033G.
  26. X. Dou, C. Zhao, N. Mehwish, et al., Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4’-Azopyridine for Controllable Dye Release. Chinese J. Polym. Sci. 2019, 37, 437-443. https://doi.org/10.1007/s10118-019-2223-2.
  27. N. Mehwish, X. Dou, Y. Zhao, et al., Supramolecular fluorescent hydrogelators as bio-imaging probes, Mater. Horiz. 2019, 6(1), 14-44. https://doi.org/10.1039/c8mh01130c
  28. A. Kousar, J. Liu, N. Mehwish, et al., pH-Regulated supramolecular chirality of phenylalanine-based hydrogels,Mater. Today Chem. 2019, 11, 217-224. https://doi.org/10.1016/j.mtchem.2018.11.005
  29. H. Ruan, G. Chen, X. Zhao, et al., Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. ACS Appl. Mater. Inter. 2018, 10, 43184-43191. DOI: 10.1021/acsami.8b14488
  30. F Wang, M. Qin, T. Peng, et al., Modulating Supramolecular Chirality in Alanine Derived Assemblies by Multiple External Stimuli, Langmuir 2018, 34(26), 7869-7876. DOI: 10.1021/acs.langmuir.8b00921.
  31. J. Liu, F. Yuan, X. Ma, et al., The Cooperative Effect of both Molecular and Supramolecular Chirality on Cell Adhesion, Angew. Chem. Int. Ed., 2018, 57(22), 6475-6479. DOI: 10.1002/anie.201801462
  32. F. Wang, C. Feng*. Metal-Ion-Mediated Supramolecular Chirality of L-Phenylalanine Based Hydrogels, Angew. Chem. Int. Ed., 2018, 57(20), 5655-5659. DOI: 10.1002/anie.201800251
  33. P. Li, X. Dou*, C. Feng, Holger Schönherr*. Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. Biomater. Sci., 2018,6(4), 785–792. DOI: 10.1039/c7bm00991g
  34. Wang F., Feng C.*. Stoichiometry-Controlled Inversion of Supramolecular Chirality of Nanostructures Co-assembled with Bipyridines, Chemistry - A European Journal. 2018, 24(7), 1509-1513. DOI : 10.1002/chem.201704431
  35. W. Ji, M. Qin, C. Feng*. Photoresponsive Coumarin-Based Supramolecular Hydrogel for Controllable Dye Release, Macromol. Chem. Phys. 2018, 219(2), 1700398. DOI: 10.1002/macp.201700398
  36. P. Li, X. Dou*, C. Feng, et al., Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays, Langmuir 2017, 33(31), 7799-7809.
  37. X. Dou, C. Feng*. Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture, Adv. Mater. 2017, 29(16), 1604062. DOI: 10.1002/adma.201604062
  38. F. Wang, W. Ji, J. He, C. Feng*. Coassembly Modulated pH-Responsive Hydrogel for Dye Absorption and Release, Macromol. Chem. Phys.2017, 218(8), 1600560.
  39. G. Liu, J. Liu, C. Feng*, et al., Unexpected right-handed helical nanostructures co-assembled from L-phenylalanine derivatives and achiral bipyridines. Chem. Sci, 2017, 8(3), 1769-1775.
  40. W. Ji, S. Zhang, G.A. Filonenko, et al., Co-organizing synthesis of heterogeneous nanostructures through the photo-cleavage of pre-stabilized self-assemblies, Chem. Commun. 2017, 53(34), 4702-4705.
  41. W. Ji, L. Li, O. Eniola-Adefeso, et al., Non-invasively visualizing cell–matrix interactions in two-photon excited supramolecular hydrogels. J Mater Chem B, 2017, 5(38), 7790-7795.
  42. Y. Yu, Y. Wang, C. Feng*. Hybrid Hydrogels Assembled from Phenylalanine Derivatives and Agarose with Enhanced Mechanical Strength. Chemical Research in Chinese Universities, 2016, 32(5): 872-876.
  43. J. Zhang, W. Ji, T. Liu, C. Feng*, Tuning Syneresis Properties of Kappa-carrageenan Hydrogel by C2-symmetric Benzene-based Supramolecular Gelators, Macromol. Chem. Phys.2016, 217(10), 1197-1204.
  44. W. Ji, G. Liu, Z. Li, C. Feng*, Influence of C−H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly, ACS Appl Mater Interf. 2016, 8(8), 5188-5195.
  45. G. Liu, L. Zhu, W. Ji, C. Feng*, Zhi-Xiang Wei, Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules, Angew. Chem. Int. Ed. 2016, 55(7),2411-2415.
  46. W. Ji, G. Liu, F. Wang, et al., Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells, Chem Commun 2016, 52(85), 12544-12577.
  47. X. Dou, D. Zhang*, C. Feng*, Lei Jiang. Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion, ACS Nano.2015, 9(11), 10664. DOI: 10.1021/acsnano.5b04231
  48. W. Ji, G. Liu, M. Xu, C. Feng*. A Redox-Responsive Supramolecular Hydrogel for Controllable Dye Release, Macromol. Chem. Phys.2015, 216(19), 1945-1951.
  49. X. Dou, J. Zhang, C. Feng*. Biotin−Avidin Based Universal Cell−Matrix Interaction for Promoting Three-Dimensional Cell Adhesion, ACS Appl Mater Interf. 2015, 7(37), 20786-20792.
  50. Y. Yao, C. Feng*. Time-Dependent Investigation of Surface Nanostructures of Weak- Phase-Separated Block Copolymer Films, Langmuir 2015, 31(33), 9026-9032.
  51. W. Cai, C. Feng, X. Ma, et al., C2-Symmetric Benzene-based Low Molecular Weight Hydrogel Modified Electrode for Highly Sensitive Detection of Copper Ions. Electrochimica Acta, 2015, 169, 424-432.
  52. G. Liu, W. Ji, C. Feng*. Installing Logic Gates to Multiresponsive Supramolecular Hydrogel Co-assembled from Phenylalanine Amphiphile and Bis(pyridinyl) Derivative, Langmuir 2015, 31(25), 7122-7128.
  53. G. Liu, W. Ji, W. Wang, C. Feng*. Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release, ACS Appl Mater Interf. 2015, 7(1), 301-307.
  54. W. Ji, C. Feng*. Glutathione-responsive C2-symmetric benzene-based co-assembly hydrogels, J. Control. Releas. 2015, 213, e19-e20.
  55. W. Ji, G. Liu, M. Xu, et al., Rational design of coumarin-based supramolecular hydrogelators for cell imaging, Chem Commun 2014, 50(98), 15545-15548
  56. G. Liu, D. Zhang, C. Feng*, Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels, Angew. Chem. Int. Ed. 2014, 53(30), 7789-7793. DOI: 10.1002/anie.201403249
  57. P. Li, Z. Yin, X. Dou, et al., Convenient Three-Dimensional Cell Culture in Supermolecular Hydrogels, ACS Appl Mater. Interf.2014, 6(10), 7948-7952.
  58. S. Yu, X. Dou, D. Qu*, C. Feng*, C2-symmetric benzene-based organogels: A rationally designed LMOG and its application in marine oil spill, J. Molecular Liquids 2014, 190, 94-98.

 

Address: 800 Dongchuan Rd. Minhang District, Shanghai, China Tel: +86 21 54747651

Copyright © 2025 Shanghai Jiao Tong University