Aniline dimers serving as stable and efficient transfer units for intermolecular charge-carrier transmission

Release time :2023-01-20  Read the number :6

iScience202326, 105762

Abstract: Because any perturbation in the number of oxidation sites associated with the polymeric backbone can cause changes in the electrical properties, the stability of electrical properties has strongly prevented the wide adoption of most conducting polymers for commercialization, e.g., polyanilines (PANI). Herein, we showed that aniline dimers (AD) had more stable conductivity during redox due to their determinately separate oxidization or reduction units. Instead of intramolecular charge transfer as PANI, AD could serve as effective transfer units to facilitate intermolecular charge-carrier transmission due to low band-gap formation induced by the J-aggregation of AD, ensuring efficient conductivity. Typically, the electrical properties of AD-derived materials will still be stable after 10,000 redox cycles under a high operating voltage, far surpassing PANI under equivalent conditions. Meanwhile, the AD-derived materials could act as effective conducting and sensing layers with good stability. This approach opened an avenue for improving the stability of conductive polymers.

 

 

https://doi.org/10.1016/j.isci.2022.105762

Address: 800 Dongchuan Rd. Minhang District, Shanghai, China Tel: +86 21 54747651

Copyright © 2025 Shanghai Jiao Tong University