Chem. Eur. J. 2023, 29, e202202735
Abstract: Being able to precisely manipulate both the morphology and chiroptical signals of supramolecular assemblies will help to better understand the natural biological self-assembly mechanism. Two simple l/d-phenylalanine-based derivatives (L/DPFM) have been designed, and their solvent-dependent morphology evolutions are illustrated. It was found that, as the content of H2O in aqueous ethanol solutions was increased, LPFM self-assembles first into right-handed nanofibers, then flat fibrous structures, and finally inversed left-handed nanofibers. Assemblies in ethanol and H2O exhibit opposite conformations and circular dichroism (CD) signals even though they are constructed from the same molecules. Thus, the morphology-dependent cell adhesion and proliferation behaviors are further characterized. Left-handed nanofibers are found to be more favorable for cell adhesion than right-handed nanostructures. Quantitative AFM analysis showed that the L929 cell adhesion force on left-handed LPFM fibers is much higher than that on structures with inversed handedness. Moreover, the value of cell Young's modulus is lower for left-handed nanofibrous films, which indicates better flexibility. The difference in cell-substrate interactions might lead to different effects on cell behavior.

https://doi.org/10.1002/chem.2022027352022
Address: 800 Dongchuan Rd. Minhang District, Shanghai, China Tel: +86 21 54747651
Copyright © 2025 Shanghai Jiao Tong University